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Of course, at least one internal value is needed, so that
a captured shock can be located anywhere on a one-dimen-In this paper, the issue of postshock oscillations generated by

shock-capturing schemes is investigated. Although these oscilla- sional grid (Fig. 1 (left)). A first-order finite-volume
tions are frequently small enough to be ignored, there are contexts scheme with a flux function corresponding either to the
such as shock–noise interaction where they might prove very intru- exact solution of a Riemann problem [7] or else to Roe’s
sive. Numerical experiments on simple nonlinear 2 3 2 systems of

[30] approximate solution does achieve this resolution forconservation laws are found to refute some earlier conjectures on
a steady one-dimensional shock. Recently, Jameson [12]their behavior. The trajectories in phase space of a computed state

passing through a captured shock suggest the underlying mecha- and Liou [18] have called attention to economical classes
nism that creates these oscillations. The results reveal a flaw in of flux functions that share this property. The Osher flux
the way that the concept of monotonicity is extended from scalar function [25] gives rise to a family of shocks with two
conservation laws to systems; schemes satisfying this formal condi-

(exceptionally one) interior values (Fig. 1 (right)), as doestion fail to prevent oscillations from being generated, even for
the flux-vector splitting scheme of van Leer [36]. Thesemonotone initial data. This indicates that satisfactory design criteria

do not exist at the present time that would ensure captured shocks properties are inherited by most modern high-order
that are both narrow and free from oscillations. Q 1997 Academic Press schemes using the same flux functions, because such

schemes usually revert to their first-order counterparts suf-
ficiently close to the shocks.1

1. INTRODUCTION This ability to classify methods and prove theorems
about them contributes to a sense of understanding andOver the last few decades, the technique of shock captur-
controlling them, which may be somewhat illusory. It ising has moved onto progressively firmer foundations. The
well known that problems arise when the shock is notoriginal concept of von Neumann [23] was to add to the
stationary but moves slowly across the mesh [38, 5, 29, 17,inviscid flow equations sufficient artificial viscosity to pro-
28]. Small, but often noticeable, oscillations appear in thoseduce shock structures that could be resolved on the discrete
wave families not associated with the shock. Woodwardgrid. However, this almost amounted to a requirement that
and Colella [38] reported this phenomenon and suggestedthe shock should not be represented too narrowly. Then
an explanation in terms of the quasi-steady shock structure.Lax and Wendroff [14] reinterpreted the schemes as solv-
If we regard Fig. 1 (left) as snapshots of a moving shocking the governing equations in integral rather than differen-
then it is clear that the shock structure must actually betial form, showing that in some average sense the correct
time dependent. It could perhaps be periodic in time, withjump relationships could be guaranteed as the mesh was
period T 5 h/S, where h is the mesh size, S is the shockrefined if any stable, consistent scheme was expressed in
speed, and T is the time for the shock to move one mesh‘‘conservation form.’’ This removed any need to represent
interval, after which its structure might be supposed topseudo-viscous structures with many mesh points. By mak-
repeat. Clearly this argument is not exact, as T may noting the internal structure appear irrelevant, the way was

opened to modern techniques that resolve the shocks with
very few ‘‘internal’’ values. Incidentally, Hou and Lax [11]

1 It is possible to prove [6] that a flux function F(uL , uR) which givesgive a nice interpretation of the von Neumann method
rise to one-point shocks cannot be a differentiable function of its input

and its relation to modern techniques. states. Since differentiability is a requirement for certain convergence
techniques like Newton’s method, the pursuit of maximal resolution may
exact a toll. In practice, the question of convergence may be so compli-* Current address: Morgan Stanley & Co. Inc., 750 Seventh Ave., 7th

floor, New York, NY 10019. cated by other issues that this may not always be an important issue.

25
0021-9991/97 $25.00

Copyright  1997 by Academic Press
All rights of reproduction in any form reserved.



26 ARORA AND ROE

found such a result for any strength of shockwave, provided
the Courant number associated with shock speed, nS 5
S Dt/Dx was rational, nS 5 p/q. Majda and Ralston [19]
generalized this result to systems of equations solved by
certain (not necessarily monotone) first-order schemes,
provided the shocks were weak, but genuinely nonlinear.
Michaelson [20] further extended the analysis to a certain
third-order scheme and claimed in a footnote to be able
to deal with schemes having any odd order of accuracy.
For the Lax–Wendroff scheme, Smyrlis [34] found profilesFIG. 1. In the figure on the left we show several cells (dashed lines)

within which we have a shock (solid line). The numerical representation for scalar problems with stationary shocks of any strength;
of this shock on this grid is represented by the cell centered values (o), Yu [40] has extended this to moving shocks and systems of
for a scheme that has one internal state within the shock. We can regard equations provided the shocks are weak and nS is rational.this figure as snapshots of a shock moving to the right, captured at five

Stationary structures for arbitrary shocks in systems, ifdifferent times, or as five different steady shocks. The figure on the right
computed by certain upwind schemes, have compact sup-shows snapshots of the same shock captured by a two-point scheme.
port and can be found relatively easily [25, 31, 36].

We believe that to shed any light on the problem dis-
cussed in this paper the analysis would need to deal with

be an integer, or even a rational, multiple of the timestep shocks that are not weak in systems of equations. The only
k, but numerical experiment makes it very plain that it permissible simplification would be to assume that S is
contains substantial truth, because the spurious waves that small and to introduce a small parameter « 5 kS/h, say,
are shed are very close to being periodic with period T, measuring the departure from a steady solution.
and hence have wavelength lh/S, where l is the speed of We have experimental evidence that such a scaling
the wave carrying the oscillations.

A perfect shock-capturing scheme would not have such u(x, t) 5 u0(x 2 St) 1 «u1(x, t) 1 O(«2) (1.1)
a flaw. Even though the oscillations might measure only a
percentage or so of the shock jump that induces them (but would work, but that the function u1 is extremely compli-
we will demonstrate that this is not always so) that might cated. As a practical objective one might seek schemes for
be ruinous to delicate calculations of shock–sound interac- which the oscillations were small, perhaps with u1 5 0. That
tion, for example. We would like to know if there are flux would imply that moving shocks could be quasi-stationary
functions that do not suffer in this way, or if we are dealing (i.e., they would follow the same path in phase space as
with an unavoidable consequence of the shock-capturing stationary shocks placed in varying locations). For most
strategy. If the latter, we would like to know a ranking nonlinear systems this contradicts a second natural require-
order for the various schemes and flux functions. ment, derived from simple conservation arguments in Sec-

If we could discover an underlying cause of the oscilla- tion 5, and this is why we believe that no general cure
tions, we could perhaps design a scheme that was free is possible. Significantly, for special types of nonlinearity
of them. In fact, we believe that we have discovered a combined with special classes of data, there is no contradic-
fundamental cause, but unfortunately it does not lead to tion and no oscillations occur.
a cure and leads us to suspect that no complete cure is The fact that a quasi-steady analysis is feasible in princi-
possible without resorting to subcell resolution. The ques- ple makes it clear that steady structure is relevant to un-
tion would then become that of discovering a ranking order steady structure, although it leaves the nature of the influ-
for the conventional schemes, although it seems to be the ence uncertain. Intuitively, one might speculate that two-
case that the actual ranking is rather problem-dependent. point structures (Fig. 1 (right)) yield less noise than one-

Rigorous analysis is very difficult; it may be worth giving point structures, because they are somehow smoother. For
a brief history of what analysts have so far achieved. Jen- the Euler equations, this speculation was apparently con-
nings [13] studied travelling wave solutions for scalar con- firmed by the numerical experiments of Roberts [29], who
servation laws as computed by monotone difference found in addition that, among the class of 2-point schemes,
schemes. He was able to prove that at large time the solu- the O-version of Osher’s method produced lower ampli-
tion reached an asymptotic profile tude oscillations than the (less expensive) P-version. Our

revisiting of this problem was partly motivated by experi-
u( j Dx, n Dt) 5 U( j Dx 2 Sn Dt), ments revealing that the order of merit is reversed when

the schemes are applied to a simple p-system. This, and
other experiments on simple first-order schemes are re-where U(j) is a continuous function and S is the speed of

the analytical shock joining the left and right states. He ported in Section 2.
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a straight line in the space of conserved variables. Actual
trajectories give the impression of attempting to compro-
mise between these. We confirm the hypothesis by con-
structing a quadratic flux function and a class of data for
which the two trajectories coincide. There is then no con-
flict and no oscillation. For ‘‘real’’ equation sets and data,
the conflict appears unavoidable.

In Section 6 we speculate on strategies that might be
used to alleviate the problem in practice. None of them isFIG. 2. Definition of slow and fast shocks. The characteristic belong-

ing to the shock family changes sign across a slow shock. The small dashed simple, and we have not seriously attempted to implement
lines represent the characteristic of the other family. any of them.

2. DIFFICULTIES WITH MOVING SHOCKS
Another piece of folk-lore is that the spurious oscilla-

2.1. Some First-Order Schemes Applied totions only affect slowly moving shocks (where slowly mov-
Simple Conservation Lawsing is sometime interpreted as meaning that the wavespeed

associated with the shock changes sign across it (Fig. 2). The general form of the conservation laws we consider is
Our more detailed studies show that the difference be-
tween these and other shocks is only a matter of degree.

wt 1 fx 5 0, w(t 5 0) 5 w0 , (2.1)
Indeed, the folklore is refuted by the occurrence of oscilla-
tions in the p-system, which admits only fast shocks (as

where w, f are the vectors of state and flux variables, respec-does any Lagrangian system).
tively. The conservative discretization of Eq. (2.1) isThe concept of monotonicity is introduced in Section

3, followed by its commonly used extension to nonlinear
w j 5 wj 2 t (Fj11/2 2 Fj21/2), (2.2)systems. We question, however, whether schemes satis-

fying this extension are ‘‘monotone’’ or ‘‘total variation
where w j is the state vector at the new time level in cell jdiminishing’’ in any practically meaningful sense.
while wj is that at the old time level. The quantity Fj11/2 isRoberts displayed his results by tracking, in conserved-
the numerical flux function at the interface between cellsvariable phase space, the trajectory of a given mesh point
( j, j 1 1), and t 5 Dt/Dx is the mesh ratio. We create first-as the shock traverses it. We experimented with superpos-
order schemes by defining Fj11/2 to be the solution (bying the tracks of all mesh points. This has the advantage
some exact or approximate method) of the Riemann prob-of allowing the trajectories of fast-moving shocks to be
lem with data wj , wj11 .seen. Even though each grid point would contribute only

For each system of conservation laws, we will choosea few points to the trajectory as the shock sweeps by it,
initial conditions corresponding to Riemann datathe ensemble of points paint a much more detailed picture,

reminiscent of the strange attractors occurring in dynami-
cal systems. We present several of these phase portraits in

w0 5 HwL, x , 0

wR , x . 0.Section 4, in the belief that, not only are they entertaining
and picturesque, but they also display clearly the complex-
ity of the problem. Usually we present our portraits in the

Further, we will choose w0 such that the solution to the
space of characteristic variables.

Riemann problem is a single front-shock.
In Section 4, we also consider second-order schemes. Not

For each conservation law that we solve, we select in
surprisingly, the Lax–Wendroff scheme generates large

this section a first-order numerical flux function and com-
oscillations, as it would do even for a linear problem, but

pare the relative merits of the numerical schemes. This
a flux-limited version of Lax–Wendroff yields a phase por-

enables us to determine whether this phenomenon is de-
trait very similar to (even though not identical with) the

pendent on the particular system being solved and whether
first-order scheme using the same Riemann solver. This

a particular numerical flux function is to be preferred.
seems to confirm that if we could devise a good first-order
scheme, it would extend easily to second order. 2.2. The p-System

Unfortunately, our findings in Section 5 suggest that a
One of the simplest examples of a 2 3 2 system is thegood first-order scheme may not be, in general, achievable.

p-system [33], which is Eq. (2.1) withAll of the trajectories we present seem to show the compet-
ing effects of two equally desirable ideal trajectories. One
of these is the quasi-steady trajectory; the other is simply w 5 (v, u)T, f 5 (2u, p)T, p 5 p(v), (2.3)
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with pv(v) , 0, pvv(v) . 0. Here we take p 5 v22. These
equations form a system of hyperbolic conservation laws
in Lagrangian coordinates, with eigenvalues given by

l1,2 5 7 [2pv(v)]1/2.

The characteristic equations are

du 2 l1,2 ? dv 5 0, along
dx
dt

5 l1,2 ,

which are easily integrated to give the characteristic vari-
ables explicitly as

C7 5 u 7 S8
vD1/2

. (2.4)

These variables serve as a natural coordinate frame in
which to visualize this phenomenon and to assist our inves-

FIG. 3. A typical result for the p-system, with data wL 5 (1, 1)T,tigation into the underlying mechanism generating these
wR 5 (50.981, 26.068)T, solved for the Roe scheme and the Osher schemesoscillations. The shock and rarefaction curves can be easily (both the O and P variants). We plot here the 1-characteristic variable

derived and are given in [33]. Because the wavespeeds are (C2) as a function of position for these first-order schemes superposed
always of opposite sign, shocks in the p-system are always onto the exact solution. This data results in a 2-shock, which is fast,

because the eigenvalues for this system do not change sign across thefast as defined above.
shock. Note that the errors are a large percentage of the actual jump at
the shock. The vertical view window is DC 2 5 0.75.2.2.1. Observations for the p-System

Equation (2.2) was solved numerically with the Roe [30]
and Osher [25] schemes, and the results for the back-char- was exactly reversed (Fig. 3). Also, the errors are not
acteristic variable C2 are shown in Fig. 3, from which we small—they are of the same order as the actual jump at
see that this variable (C2) has a persistent postshock error. the shock. Thus, several features of shock oscillations pre-
This wavelength (lerror) of the error is given approximately viously conjectured to be universal turn out to be peculiar
by [29] to the equation set concerned.

2.3. The Isothermal Euler Equations
lerror 5

l(1)
L

S
Dx 5

[2pv(vL)]1/2

S
Dx.

For this system, the vectors in Eq. (2.1) are

w 5 (r, ru)T, f 5 (ru, ru2 1 ra2)T, a 5 const, (2.5)We will demonstrate in Section 4 that the characteristic
variable belonging to the shock family (i.e., the front-char-

with wavespeedsacteristic C1) is not monotone either. Thus, the problem
is not restricted to slow shocks and does not manifest itself

l1,2 5 u 7 a. (2.6)only in the ‘‘other’’ characteristic variable.
Roberts [29] found a definite ordering among the

schemes that he tested. For a first-order scheme, he ob- The characteristic equations and characteristic variables
served that the exact Riemann solution and Roe’s approxi- are
mate Riemann solver gave the largest oscillations, followed
by the P version of Osher’s solver (where the left and right

d Sln r 7
u
aD5 0, along

dx
dt

5 u 7 a,

(2.7)
states are connected by simple waves ordered from the
smallest to the largest eigenvalue, which is intuitively more
physical). Best was the O version of Osher’s solver (here, C 7 5 ln r 7

u
a

.
the eigenvalues are ordered from the largest to the small-
est—this is the true Osher path).

For our experiments with the p-system, this ordering The shock and rarefaction curves are derived in [15].



POSTSHOCK OSCILLATIONS 29

FIG. 4. Here, we have plotted the 1-characteristic variable (C 2) as a function of position for the isothermal Euler equations for stationary shock
data wL 5 (4, 22)T, wR 5 (1, 22)T, with a superposed convective velocity uc 5 0.1 5 S. We present a comparison of results obtained by the Roe
scheme, the Osher schemes (O and P), Van Leer’s FVS scheme, and the minimum dispersion scheme. The figure on the right is a zoom of the
postshock values for the various schemes, showing their oscillatory behavior. The vertical view window is DC 2 5 0.21 for the figure on the left and
DC 2 5 0.09 for the zoom on the right.

2.3.1. Observations for the Isothermal Euler Equations where the equation of state required for closure is p(r, e)
5 (c 2 1)re, c 5 cp/cv 5 1.4 is the ratio of specific heats,Numerical results for the Roe [30] and Osher [24])
and e is the specific internal energy. In the above equation,schemes as well as Van Leer’s FVS [36] scheme are pre-
the specific total energy is E 5 e 1 u2/2 and the specificsented in Fig. 4. These results are consistent with those of
total enthalpy is H 5 E 1 p/r. This system has eigenvaluesRoberts [29], in that we see the ordering of schemes as he

did, i.e., the true Osher, reversed Osher and Roe, in order
of increasing amplitude of errors. Note further, that for

l1,2,3 5 u 2 a, u, u 1 a, (2.9)
the FVS scheme, we have a large error in the numerical
shock layer, while the errors are comparable to the Osher
schemes elsewhere. We shall return to the nonmonoto-

and characteristic equations
nicity of the FVS scheme and its implications later (Sec-
tion 6).

In addition, we tested one scheme not linearly equivalent
dp 7 radu 5 0, along

dx
dt

5 l1,3 ,to first-order upwinding. We speculated that disturbances
of the same family as the shock might be escaping from it
due to phase error, so that some improvement might result

dp 2 a2 dr 5 0, along
dx
dt

5 l2 .from using a scheme linearly equivalent to the minimum
dispersion scheme [4] (note that in our implementation,
we have used the Roe matrix in place of the exact Jacobian
matrix). This was a partial success, in that this scheme, See [8] for the shock and rarefaction curves.
based on Roe’s Riemann solver, produced results that had
oscillations in the C2 variable of less than one part in

2.4.1. Observations for the Full Euler Equations10,000 (for the cases we computed); however, the shock
profiles were considerably broadened (see Fig. 4). Numerical results for the Roe scheme are presented in

Fig. 5, and we were able to duplicate the observations of
2.4. The Full Euler Equations

Roberts [29] for this case as well; however, we found that
several shock-tube problems, which appeared to be freeThe state and flux vectors of Eq. (2.1) are
of this phenomenon, were only so to plotting accuracy—
zooming in revealed the now-familiar oscillations (Fig. 6).w 5 (r, ru, rE)T, f 5 (ru, ru2 1 p, ruH)T, (2.8)
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u j

um
$ 0, ; m 5 j 2 k, ..., j 1 k. (3.1)

Harten [9] established this concept as the most restrictive
member of a hierarchy of design constraints for numerical
schemes, which can be concisely written as

Monotone ⇒ L1 2 contracting,

L1 2 contracting ⇒ Total variation diminishing,

Total variation diminishing ⇒ Monotonicity preserving.

For monotone schemes Jennings [13] proved the existence
of travelling wave solutions, which are the orbits for the
scalar conservation laws that he studied. By this we mean
that all un

j , for (n 2 j) large enough, are close to a continu-
ous function u(j), where

j 5 j 2 nnS , (3.2)
FIG. 5. A typical plot of the density for the solution to the Euler

equations with primitive variable data (w 5 (r, u, p)T) wL 5 (0.3061, and nS 5 S Dt/Dx is the CFL number based on the shock
20.6821, 0.5908)T, wR 5 (0.1, 22.5, 0.1)T, using a second-order flux-

speed S. This establishes that given a conservation law, alimited Lax–Wendroff scheme with the Roe scheme as the underlying
numerical scheme meeting certain conditions and somefirst-order scheme. This gives a shock speed S 5 0.2, and we used a CFL

number of 0.81 and Van Leer’s harmonic limiter. The solid line is the initial data, this orbit is fully determined. Properties of the
exact solution while the dashed line with symbols is the numerical solution. orbits were established in greater detail by Majda and
The vertical view window is Dr 5 0.22. Ralston [19].

This monotonicity concept has been extended to systems
of conservation laws as a guiding principle in the design3. A DIGRESSION ON MONOTONICITY
of numerical algorithms. The extended principle is pre-

When solving a scalar problem by a method of the form cisely the basis for the splitting of fluxes in FVS schemes,
demanding the eigenvalues of split fluxes be nonnegativeu j 5 u j (uj2k , ..., uj1k)
for F1 and nonpositive for F2 (i.e., l1 $ 0, l2 # 0). How-
ever, from the FVS results for the isothermal Euler equa-the scheme is said to be monotone [13] if

FIG. 6. Solution to the Lax problem for the Euler equations, with primitive variable data (w 5 (r, u, p)T wL 5 (0.445, 0.698, 3.528)T, wR 5

(0.5, 0.0, 0.571)T, using a second-order flux-limited Lax–Wendroff scheme with the Roe scheme as the underlying first-order scheme. These results
show that although the region behind the shock (and in front of the contact), looks oscillation-free (left), these are present as seen in the zoom (right).
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tions shown in Section 2.3.1 (Fig. 5), we clearly see that, transition from blue (t 5 0) to red (t 5 T, the final time),
with the intermediate times corresponding to intermediatealthough by construction the scheme is technically mono-

tone, this has not succeeded in enforcing any of the qualita- colors (blue to green to yellow to red, in order of increasing
time). Note that in the phase portraits, we have plottedtive properties we might have hoped for.

Thus, even the most restrictive of Harten’s hierarchy of P n
j ;j, n, on the same picture. The simultaneous oscilla-

tions in the (mutually perpendicular) C 2, C 1 directionsconstraints does not translate in any convincing way to
nonlinear systems. In fact, it seems that for systems, gives rise to Lissajous figures, which directly represent the

trailing oscillatory wavetrain.‘‘monotone’’ does not imply ‘‘monotonicity preserving.’’
In addition, observe from Figs. 7 and 9 that the final

orbit loops over the state L, indicating that there is an4. VISUALIZATION IN STATE SPACE—ORBIT PLOTS
overshoot in the C 1 variable (the y-coordinate in the orbit
plots); this point was made in Section 2, but not demon-In the course of analyzing the data for the 2 3 2 systems

(Section 2), we have found that an efficient method of strated there.
In Fig. 10, we plot orbits for the first-order Roe schemerepresenting all the relevant information in a single picture

is to make iterative maps in phase space, using characteris- to see the effect of small nonzero S (for the isothermal
Euler equations). In the limit of S R 0, we expect ourtic variables (C 2, C 1) as coordinates. The results provide

much insight into the process of postshock oscillations and orbit to be the Hugoniot because for a stationary shock
the Roe solver gives us a single intermediate state lyingreveal some interesting behavior. Based on our experi-

ments, we make the following claim. on the Hugoniot [31]. Thus, the Hugoniot curve H is a
limiting case of a shock orbit, interpreted as the set of allLet P n

j be points in phase space generated in the one-
dimensional numerical simulation of a moving nonlinear intermediate states obtainable from arbitrary initial condi-

tions (but with L, R connected by a single shock). Figurediscontinuity, for some given set of conservation laws, using
any stable deterministic algorithm, on a fixed mesh with 10 is empirical evidence that for S 5 «, the orbit departs

from H by O(«).spacings (Dx, Dt). Here, n is the time level and j is the cell
number. Then, as n increases, all such points approach In Fig. 11, we present orbits for the minimum dispersion

scheme and Van Leer’s FVS scheme, while in Fig. 12, weindefinitely close to a limiting curve which can be parame-
terized by the variable j (Eq. (3.2)). Our experiments seem plot these for Osher’s O and P variants. Observe that the

orbit for the minimum dispersion scheme approaches theto show that such orbits exist for any stable deterministic
algorithm (for example, second-order methods such as the Hugoniot, appearing to be tangential near the postshock

state (to the naked eye). The O version of Osher’s schemeLax–Wendroff and Beam–Warming schemes, as well as
algorithms constructed using nonlinear limiters) and for is close to the Hugoniot, but oscillatory behaviour is visible,

becoming more pronounced for Osher’s P version. Vanany nonlinear system we have explored, provided the dis-
continuity belongs to a genuinely nonlinear family. Leer’s FVS scheme and Roe’s scheme are quite oscillatory

near the postshock state for this system, giving the impres-The orbits must of course connect the two points in
phase space that represent the pre- and postshock states. sion that they are constantly overcompensating for the

error.Typically, the orbit leaves one of these endpoints smoothly,
and spirals into the other, following something like a Figure 13 shows second-order schemes using the min-

mod and Van Leer’s (harmonic) limiters (here, we use fluxdamped version of a Lissajous figure (a curve generated
in the plane by a particle simultaneously moving sinusoi- limiting, with a wave-by-wave limiting procedure for each

equation [2]—for more details on limiting, see [35]). Thesedally in two mutually perpendicular directions). However,
a spiral at each end is possible (some examples of these can be compared to Fig. 10 (left) to see that the orbits for

the limited second-order schemes are very similar to thatwill be shown shortly). We suppose that these parts of
the orbit could be explained by linearizing the equations of the basic first-order scheme. It is seen that as the schemes

get better, the second crossover of the orbit with the Hu-around one of the asymptotic states. The intermediate part
of the orbit can, however, display considerable individual- goniot (near L) moves closer to L, while the first crossover

point stays almost stationary. The fact that the second-ity depending on the governing equations and the scheme
employed. It is certainly remarkable that each excursion order flux-limited schemes shown in Fig. 13 closely resem-

ble the underlying Roe scheme comes as no surprise, sinceis faithfully reproduced at all later stages in the history of
the evolving discontinuity. This is most readily observed in the vicinity of shocks, we expect the scheme to reduce

to the underlying first-order scheme.by color-coding the history of the points in time (Figs. 7
and 8), from which we can see how transient points are The pure Lax–Wendroff scheme (with no limiting) pro-

vides some very interesting orbits. First, we get Lissajous‘‘pulled’’ towards this limiting (attracting) orbit (Fig. 9),
after which all subsequent points lie on this limit curve figures at each end of the Hugoniot (Fig. 14). Second, if

we zoom in on the lower lobe, we find a qualitatively(Figs. 8 and 9). The color-code used in the orbit plots is a
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7

8

FIG. 7. Orbit plots for the p-system using the first-order Roe scheme with wL 5 (1, 1)T, wR 5 (50.981, 26.068)T. The figure on the left shows
the Hugoniot and the numerical orbit (the stray points are simply the early time transients). On the right is a zoom of the boxed area (schematic),
showing that the ‘‘other’’ characteristic variable is non-monotone (since it is seen to loop over the value at the left state (L). We also get a first
glimpse at the intricacies of the orbit. The view window for the plot on the left is approximately DC 2 5 5.31, DC 1 5 9.8, while that for the plot
on the right is approximately DC 2 5 1.25, DC 1 5 0.162.

FIG. 8. A further zoom of the region shown in Fig. 7 (right) showing the details of the orbit. It is quite extraordinary that the orbit loops over
itself among other things and that all points lie on such an orbit. The view window for this plot is approximately DC 2 5 0.85, DC 1 5 0.0263.
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FIG. 9. Orbit plots (similar to Fig. 7) for the p-system using the first-order Roe scheme with wL 5 (1, 1)T, wR 5 (5.342, 21.047)T, which is a
weaker (faster) shock. This results in orbit that are more smooth, but qualitatively, the behavior is similar to the previous case. Once again, the
‘‘other’’ characteristic variable is nonmonotone and the orbit is intricate. Another feature, more clearly seen here, is the manner in which the points
are attracted to the orbit. The view window for the plot on the left is approximately DC 2 5 0.61, DC 1 5 3.7, while that for the plot on the right is
approximately DC 2 5 0.122, DC 1 5 0.00286.

FIG. 10. Orbit plots for the isothermal Euler equations using the first-order Roe scheme with stationary shock data wL 5 (4, 22)T, wR 5

(1, 22)T, with a superposed convective velocity uc 5 S 5 0.1 (left), 0.01 (right). As can be seen, the behavior of the scheme is essentially the same,
and as S R 0, the limiting curve approaches the Hugoniot. Also shown is the projection (P), which is the path a moving discontinuity actually
follows (it is the straight line joining the left and right states in conserved variable space, projected here onto characteristic variable space). The
view window for these plots is approximately DC 2 5 0.31, DC 1 5 2.9.
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FIG. 11. Orbit plots for the isothermal Euler equations using the minimum dispersion scheme (left) and Van Leer’s flux vector splitting (FVS)
scheme (right), with stationary shock data wL 5 (4, 22)T, wR 5 (1, 22)T, with a superposed convective velocity uc 5 0.1 5 S. The view window
for these plots is approximately DC 2 5 0.31, DC 1 5 2.9.

FIG. 12. Orbit plots for the isothermal Euler equations using the first-order Osher schemes with stationary shock data wL 5 (4, 22)T, wR 5

(1, 22)T, with a superposed convective velocity uc 5 S 5 0.1 for the O (left) and P (right) variants. The view window for these plots is approximately
DC 2 5 0.31, DC 1 5 2.9.
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FIG. 13. Orbit plots for the isothermal Euler equations using a flux-limited, explicit, Roe-averaged Lax–Wendroff scheme with stationary shock
data wL 5 (4, 22)T, wR 5 (1, 22)T, with a superposed convective velocity uc 5 0.1 5 S. The figure on the left (right) was obtained using the minmod
(Van Leer’s harmonic) limiter. The view window for these plots is approximately DC 2 5 0.31, DC 1 5 2.9.

FIG. 14. This plot is to demonstrate that Lissajous figures and spirals form, and sometimes are remarkably clear. These are orbit plots for the
isothermal Euler equations using the unlimited second-order Lax–Wendroff scheme (left) and a zoom of Van Leer’s FVS scheme (shown in Fig.
11 (right)), with stationary shock data wL 5 (4, 22)T, wR 5 (1, 22)T, with a superposed convective velocity uc 5 S 5 0.1. The Lax–Wendroff
scheme gives very nice Lissajous figures at both ends, and the Van Leer scheme shows the states spiralling into the left state. The view window for
the plot on the left is approximately DC 2 5 0.5, DC 1 5 4.55, while that for the plot on the right is approximately DC 2 5 0.0035, DC 1 5 0.0005.
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FIG. 15. A zoom of the orbit obtained for the unlimited Lax–Wendroff scheme for the lower lobe (Fig. 14 (left)). These are again for the
isothermal Euler equations with stationary shock data wL 5 (4, 22)T, wR 5 (1, 22)T, with a superposed convective velocity uc 5 0.1 5 S. The
figure of the left is a blowup of the lower lobe, while the one on the right is a zoom of the first inner lobe, and one can see a self-similar structure.
Successive zooms retain this qualitative structure. The view window for the plot on the left is approximately DC 2 5 0.024, DC 1 5 1.2, while that
for the plot on the right is approximately DC 2 5 0.005, DC 1 5 0.5.

self-similar structure (Fig. 15), which resembles features might hope, with encouragement from Fig. 10, to develop a
quasi-stationary theory of slowly moving shocks. Roe [31]observed in dynamical systems. Another observation is

that Van Leer’s FVS scheme gives a classic spiral at the has shown that stationary shocks produced by the Godunov
or Roe schemes have just one intermediate state, whichleft-state (Fig. 14). Thus, the phase portraits present a

rich variety of striking features that we could not possibly lies on H (where the correct H is the 2-shock (1-shock)
curve for a corresponding shock through the left (right)have anticipated.
state). Because of its relevance we reproduce the proof.

Consider the isothermal Euler equations and assume we
5. DIAGNOSIS OF THE PROBLEM have supersonic flow to the left (i.e., the right state is

supersonic to the left as shown in Fig. 16). Then FMR 5
What we have observed so far indicates that postshock FR. For a stationary shock, we require FL 5 FLM 5

oscillations are not merely a slow or fast shock effect. FMR 5 FR , and FL 5 FR is given. However, if there are to
Further, the Osher scheme is as prone to them as the Roe be no waves created that go leftward at the L, M interface,
scheme, and the error is not limited to any one acoustic then we need â1 5 0, where
family. We now formulate an explanation of the postshock
oscillations, with the isothermal Euler equations as illus-
tration.

5.1. The Cause of the Postshock Oscillations

Consider data that corresponds exactly to a single front-
shock for some conservation law. To bring out the diffi-
culty, we will suppose it to be a slowly moving shock, even
though that is not essential as we have already seen. We

FIG. 16. Schematic of the stationary shock structure for the Roemight intuitively suppose that the orbit generated by a
scheme, illustrated on the isothermal Euler equations. States to the right

slowly moving shock would be a perturbation around the of R are all equal to R and supersonic to the left, while those to the left
locus of intermediate states representing stationary shocks of L are similarly equal to L. M is the middle state within which the

shock is trapped. Since it is a stationary shock, FL 5 FLM 5 FMR 5 FR .at different locations relative to the grid. In other words, we
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FIG. 17. On the left, we present the shock and rarefaction curves for the isothermal Euler equations in conserved variable space, showing the
loci of right states that can be connected to the given left state (L) by a single wave (shock or rarefaction). Further, selecting a 2-shock (front-
shock) which is also the relevant Hugoniot H, we show the right state (R) and the projection (P), which is the set of intermediate states that can
be formed by a moving discontinuity of arbitrary speed, after exactly one time step. From conservation, these states must lie on the straight line
joining the left and right states in conserved variable space. Notice that H is not monotone in this space. The figure on the right is the relevant
part of the one on the left, showing the states (L, R), the Hugoniot (H), and the projection (P), but shown in characteristic variable space. Notice
that P is not monotone in this space, while H is so.

time step, the solitary intermediate state generated for
â1 5

1
2 SDr 2

r̂

a
DuD, r̂ 5 (rL ? rR)1/2; either the Roe scheme or the Godunov scheme by a moving

shock does lie on P (from conservation, and the ability of
each of these schemes to recognize isolated shocks). Manyi.e., we have a vanishing 1-wave. This implies that
of the orbits that we have observed seem to be ‘‘influ-
enced’’ by both H and P. Transferring these curves (H and

Du 5
a
r̂

Dr, P) to characteristic variables space (C 2, C 1), we find that
while the Hugoniot H is monotone, the projection P is not
(Fig. 17 (right)).

which can be easily rearranged to give A critical point to note is that if the intermediate point
M is not on H, a nonvanishing left-going wave will be
generated by the Riemann problem (L, M), since from Fig.m 5

r

rL
mL 1 (r 2 rL) a S r

rL
D1/2

.
17 (left) we notice that any point lying on P is connected to
L by a combination of a back-rarefaction and a front-shock.

But this is exactly the 2-shock curve [15] connecting L to The root of the postshock oscillations now lies exposed;
M, demonstrating that the single intermediate state M lies most numerical schemes that solve Riemann problems take
on the nonphysical branch of the Hugoniot through L, as input the projections of the solution in each cell (or
thus generating no leftward propagating waves. This also some higher order interpolation based on the same projec-
ensures equality of all fluxes, satisfying stationarity of the tions). As we have seen, this leads to a full set of waves
shock. It is plausible that when the shock is slowly moving, of nonvanishing strength (since H and P are distinct, in
M will lie slightly off H, giving rise to weak left-moving general), which are continuously generated and contami-
waves. nate our numerical solution. An alternative explanation is

Now consider the projection onto the grid of a shock that a shock that did not generate spurious waves would
not lying at an interface (Fig. 17 (left)). For different loca- have to stay close to the quasi-steady trajectory H; such a
tions of the shock within the cell (Fig. 1 (left)), the locus shock could not be conservative.
of the projection P (i.e., the set of intermediate states M According to this explanation, if we could devise a non-
that can be formed by a moving discontinuity of arbitrary linear case where P and H are coincident, we would expect
speed, after exactly one time step) in the space of conserved no oscillations, since after one time-step M would be on
variables (r, ru) is a straight line joining states L and R P. However, this also being H, we can still connect L to
(from conservation). If it were possible to create a scheme M by a single shock, leading to no backward waves being
that could capture a moving shock (of any speed) with a generated, and this process would be expected to continue
single intermediate state at all times, that state, by conser- for all time. Such a situation arises in a class of problems

where the nonlinearity is purely quadratic. These werevation, would have to lie on P. Moreover, after the first
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studied in detail in [32], where the specific cases were clas- to hold for either the Godunov or Roe fluxes, for any set
of equations in which the nonlinear waves are convex. Oursified.
results above lead us to make the following conjecture:

5.2. A Model Problem with Quadratic Nonlinearities Slowly moving shockwaves will generate spurious oscilla-
tions in a code employing either the Godunov or Roe fluxesThis system may again be written in the form of Eq.
whenever the Hugoniot curves are not straight lines in the(2.1), with
phase space of conserved variables. For other fluxes giving
rise to one-point stationary shocks, the locus that must bew 5 (u, v)T, f 5 (au2 1 v2, 2uv)T, a 5 const,
a straight line is the locus traced by that intermediate point.(5.1)

For schemes creating two- or more-point shocks, it is
possible to satisfy conservation without having the interme-and with wavespeeds
diate points follow the straight path P. For example, if
two intermediate states are involved, it is necessary andl1,2 5 u(1 1 a) 7 [u2(a 2 1)2 1 4v2]1/2, l1 , l2 . (5.2)
sufficient that their centroid remains on P. To date, how-
ever, we have not seen how to use this additional freedomThe characteristic equations are
in any advantageous way.

2v du 1 (l1,2 2 2au) dv 5 0, along
dx
dt

5 l1,2 6. SOME POSSIBLE CURES

We incline to the belief that postshock oscillations are an
However, characteristic variables are not readily available

inevitable feature of shocks captured by currently standard
in closed form.

methods, except for certain special equation sets. However,
A simple feature of this system is that since the nonline-

we list below some unorthodox strategies that could be
arity is purely quadratic, the Roe matrix Â is simply A

worth investigating in more depth than we had time to
evaluated at the average state, i.e.,

achieve.

Â 5 A 5 A (w), where w 5 As(wL 1 wR). 6.1. Adaptive Grids with Dissipative Schemes

An obvious remedy, which is viable and available, is toThe Hugoniot is
use a sufficiently dissipative scheme in the entire domain
and to regain the resolution of the flow features by grid(a 2 1) u [u] [v] 1 v [v]2 2 v [u]2, uR , uL , (5.3)
adaptation [3, 28]. But for unsteady problems, additional
adaptation results in time-step penalties, which may bewhere [z] 5 zR 2 zL denotes the jump in quantity z. This
quite severe if we want to maintain time-accuracy. Thisequation can be easily solved for [u] and substituted into
expense can be substantially reduced if we take (many)the expression for the shock speed S 5 [f]/[w], resulting
smaller time-steps in fine-mesh regions, while taking largerin a shock speed that is merely the characteristic speed
steps in other regions (see, for example, [28]), since thel1,2 evaluated at the average state w.
fine-mesh regions are typically a small fraction of the com-A special case for this model arises when we choose
putational domain. Since the minimum-dispersion schemeinitial data satisfying
used by itself as a first-order scheme yielded rather small
oscillations in Section 2.3, we experimented with a second-v 5 au, a 5 (2 2 a)1/2, a , 2.
order limiter scheme in which the minimum-dispersion
scheme was used as the low-order component. We againThis straight line identically satisfies Eq. (5.3), and if
found oscillations but did not explore the full range ofuR , uL is chosen, then we get entropy-satisfying shocks.
combinations for high- and low-order schemes and limiterSince u, v are conserved variables, this line is also the
strategies. We note that some form of controlled shockprojection. Thus, for this choice of initial data, the Hugon-
spreading has been the cure recommended by several in-iot H and projection P coincide. Numerical experiments
vestigators [38, 5, 17].verify that the solution is indeed oscillation-free, although

data not lying on this line do generate oscillations.
6.2. Physical Viscosities

5.3. A Conjecture
We conducted some experiments on a kinetic-upwind

scheme in which the numerical flux is derived by consider-The result that the locus of intermediate state for a
stationary shock coincides with the nonphysical branch of ing the distribution of random velocities in each cell. A

particular version is based on assuming that the velocitiesthe Hugoniot through the postshock state can be shown
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are relaxing toward equilibrium according to the BGK A return to the mathematically impeccable strategy of
shock-fitting should of course eliminate the difficulty, butapproximation [39, 27]. Although originally conceived as

a strategy for the Euler equations, it turns out that it simu- the numerical hardships are formidable if there are multi-
ple shocks with many intersections. Interesting compro-lates the Navier–Stokes equations at some local Reynolds

number. It might be found appealing that the artificial mises involve shock recovery [22], floating shock-fitting
[21, 10], and grid adjustment [16, 26, 37].viscosity should actually be a natural one, although to some

extent, this is a return to the concepts of von Neumann
and Richtmyer [23]. However, the results were, once again,
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